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ABSTRACT 

The Navier-Stokes equations a r e  

of the liquid in a liquid-filled cylindrical 

solved exactly for the motion 

tank with oscillation about the 

longitudinal axis.  

is caicuiaied. 

liquid a r e  presented for  both a very  large coefficient of viscosity and a 

normal  coefficient of viscosity. 

derived and velocity ratio profiles a re  presented. 

analytical and experimental  effective moment of iner t ia  ra t ios  shows 

good agreement.  

The moment due to the viscous shear  at the tank wall 

Eqiiatior;~ far the effective moment of iner t ia  of the 

An equation for the velocity ratio is 

A comparison of the 
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INTRODUCTION 

The problem of the oscillating liquid- filled cylindrical propellant 

tank is important in  the state-of-the-art missi le  design. 

mus t  be considered for both structural  evaluation and flight control 

requirements of a large missile.  

This problem 

Additional s t ructural  loads a r e  imposed on the propellant tank 

and associated tank s t ructure  by the relative motion of the liquid pro- 

pellant. The viscous shear  s t r e s s  of the liquid propellant a t  the tank 

wall c rea tes  a moment. 

tank motion and r e s i s t s  additional tank displacement. 

moment of inertia of the liquid is defined by the ratio 

This moment is in the direction opposite to the 

The effective 

.. 
where Mr=a is the moment due to the viscous shear  a t  the tank wall and 8 

is the angular acceleration of the tank. 

A theoretical analysis of the effective moment of inertia of a liquid- 

filled cylindrical tank with oscillation about the longitudinal axis is  pre- 

sented in this report. 

l a r g e  liquid propellant coefficient of viscosity and a small  coefficient of 

viscosity. 

information is presented in both analytical and graphical form. 

Equations a re  given for the special cases  of a very 

An analysis of the velocity profiles is also included. This 

1 



I .  
THEORETICAL INVESTIGATION 

FORMULATION O F  THE EQUATIONS 

The coordinate system for the cylindrical tank is shown in 

Figure 1.  

obstructions, is assumed for  simplicity. It is further assumed that 

the tank is long in order  to neglect the end effects. 

A cylindrical tank with smooth walls, i .  e. no internal 

The liquid dynamics of this system a r e  represented by the 

Navier - Stokes and Continuity equations. 

from Reference 1. 

These equations a r e  taken 

Navier- Stokes Equations (Cylindrical Coordinates) 

2 
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Figure 1. Cylindrical Tank Coordinate System 
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Continuity Equation ( Cylindrical Coordinates ) 

The equations for the shear  s t r e s s  a re  a lso taken from Reference 1. 

- Stress -- Components 

Equations 1 through 7 must  be solved for the desired boundary conditions 

imposed upon the tank motion. 

ASSUMED TANK MOTION AND RESULTING LIQUID DYNAMICS 

A smooth-walled cylindrical tank with motion about the longitudinal 

axis is assumed. 

forced oscillation that may be described by 

The motion of the tank is assumed to be an undamped, 

iot  
9 = +oe 

where 90 is the amplitude of the angular displacement and o is the f re -  

quency of the oscillations. 

and the end effects may be neglected. 

It is further assumed that the tank is long 

I 

I 

These assumptions a r e  satisfied i f  the fluid velocity components 

a re  
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t 

V r  = 0 (9)  

t 

v, = 0 (10) 

The Navier -  Stokes, continuity, and s t r e s s -  component equations may 

be simplified by the substitution of these boundary conditions in Equations 

1 through 7. 

Navier- Stokes Equations 

Stress ComDonent Eauation 

Equations 13 and 14 mus t  be solved for the fluid velocity distribution and 

s h e a r  s t r e s s  respectively. 

as a function of the tank radius i f  desired.  

Equation 12 may be solved for  the p re s su re  

SOLUTION O F  THE SIMPLIFIED NAVIER- STOKES EQUATION 

The simplified Navier-Stokes equation is an equation of the form 

V+ = R ( r )  T(t) 

5 



I -  This equation may be solved by the standard separation of variable 

technique since 

where A is a constant that mus t  satisfy the boundary conditions. 

complete solution to Equation 16 i s  

The 

A1 and B1 a r e  constants to be determined from the boundary conditions 

and 11 [ r ( i ~ / v ) ~ ]  

the first and second kind and first order respectively. 

1 1 
and K1 [ r ( io/v)z]  a r e  modified Bessel functions of 

The boundary condition of a zero velocity a t  the tank axis requires 

The boundary condition the constant B1 = 0 since I l (o)  = 0 and K1 (0) # 0.  

may be  used to evaluate the constant A1 a s  

The equation for the fluid velocity a s  a function of the radius, 

fluid properties,  and tank oscillation frequency i s  

6 
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Equation 19 may be interpreted as a vector at a given phase angle with 

respect  to the tank displacement vector. 

Equation 19 may be written 

Using this interpretation, 

The imaginary arguments of the modified Bessel  function may be 

simplified. 

in Appendix D. 

A complete analysis including velocity profiles is  presented 

SOLUTION FOR THE SHEAR STRESS 

The equation for the shea r  s t r e s s  is rewritten for  convenience. 

After substitution of the equation for the fluid velocity, Equation 14 

becomes 

The procedure for  the evaluat 

a 
e -  

ar 

on of t le derivative in Equation 21 

is presented in Appendix A. 

derivative,  Equation 21 may be written 

After substitution of the value for  the 

7 



I .  

t 

Equation 22 may be simplified 

Equation 23 is an equation for the shear  s t r e s s  profile as a function of 

the tank radius, fluid propert ies ,  and tank oscillation frequency. 

The shear  s t r e s s  at the tank wall is determined f rom Equation 23 

evaluated at r=a. 

Equation 24 in this form is difficult to use due to the imaginary arguments 

of the modified Bessel  functions. 

a la te r  section of this report .  

Another function will be introduced in  

E F F E C T I V E  M O M E N T  O F  INERTIA 

The effective moment of inertia of the liquid-filled oscillating 

cylindrical  tank is defined a s  

where  

- 
- 

moment due to the shea r  s t r e s s  at the tank wall 

angular acceleration of the oscillating tank 
Mr =a 

9 
.. 

The angular acceleration of the oscillating tank is obtained by differenti- 

ating Equation 8 twice with respect  to t ime. 

8 



I -  The moment due to the shear  stress a t  the tank wall is 

The shear  s t r e s s  a t  the tank wall is given by Equation .24. After sub- 

stitution of Equation 24 into Equation 26, the equation for the moment 

at the tank waii is 

M,=, = 2 m a 2  hpw+o 

The effective moment of inertia of the liquid-filled oscillating 

tank is evaluated by substitution of the equations for the moment and 

angular acceleration in  Equation 25. Making these substitutions, the 

equation for  the effective moment of inertia is 

The modified Bessel functions with imaginary arguments may  be written 

in  another manner to improve the usefulness of Equation 28. 

In Appendix B it is shown that the modified Bessel functions with 

imaginary arguments may be written in  t e r m s  of Bessel functions of the 

first kind. Writing Equation 28 in this manner 

9 



I .  
I -  The validity of Equation 29 may be proven by showing that leff 

is equal to the moment of inertia of a solid with the same  dimensions 

as the coefficient of viscosity approaches infinity, i. e. , 

Before Equation 29 can be evaluated for  a fluid with an infinite coefficient 

of viscosity, Equation 29 must  be written in an alternate form 

a i  

A di rec t  substitution of an infinite coefficient of viscosity into 

Equation 31 resu l t s  in an  indeterminate form. 

L'Hopital's rule  still yields an indeterminate form.  

se r i e s  definition of the Bessel  functions is utilized to evaluate the 

effective moment of iner t ia  of an oscillating cylindrical tank filled with 

a fluid having an infinite coefficient of viscosity. 

An application of 

In Appendix C the 

A more  useful form of Equation 3 1  would be an equation that did 

not contain imaginary quantities and Bessel  functions with imaginary 

arguments.  

Reference 2 

3. 
The following definition of Jn(i2x) was obtained f rom 

00 n t 4 m  
3 3n/2 

(2m)! ( n t  2m)! 
Jn(izxX) = i 

(32)  1 00 n t  2 t  4m 
(-l)m x 

(2mt l)! ( n t  2 m t  l)! 
t i  n t 2 t 4 m  

m=O 2 

10 
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For  conservation of space, Equation 32 will be writ ten 

where 

Equation 32 respectively. Using deMoivre's theorem, i 

be writ ten 

E, and E, represent  the f i r s t  and second summations in 

may 
3n/ 2 

3n/2 lT 3nr  3na t i sin - 
4 

= cos - = ( c o s  j -  4 
i 

Equation 33 may be simplified using the resul ts  of Equation 34. 

E, - sin- 
3 n r  3 

4 

3na C J  t i ( c o s -  3n l~  C, t sin - 
4 4 

(34) 

(35) 

The rea l  and imaginary par ts  of Equation 35 a r e  defined as the functions 

bern(x)  and bein(x) such that 

3 
Jn( i2x)  = bern(x) t bein(x) (36) 

Equation 31 may be rewrit ten in te rms  of these functions with the aid 

of Equation 36. 

11 



I .  
I .  The rea l  and imaginary par ts  of Equation 37 m a y  be separated 

using the following relationships : 

3n 3rr t i s i n  - 
4 

z i z  - 
4 

- cos - 

and 

where 

When Equations 38 and 39 a r e  substituted in  Equation 37 and the indicated 

multiplications a r e  completed, the following equation for the effective 

moment  of inertia is obtained. 

r 

3n 
4 

sin - [ bero (x) ber l  (x) f beio (x) beii (XI1 

t berl ' (x)  t be i lz (x)  

3a 
4 sin - [ beio (x) ber l  (x) - bero (x) beil (x)] 

ber l '  (x) t beil (x) 

12 



I .  
One final simplification in  this equation may be made since 

31T 1 
4 =r  sin - 

3rr 1 cos -  - 4 - - Z T  

Making this simplification: 

wp L -beio (x) ber l  (x) t bero (x) beii (x) 
be r l  (x) f bei12(x) Ieff - - 2.rra2hCL 0 (1 a(z)2 [ 

where 

beio (x) ber l  (x) - bero (x) beii (x) 
ber l  (x) t beii (x) 

bero (x) berl  (x) t beio (x) beil (x) 
t berlZ(x) t bei12(x) 

1 

x = a(";>' 

This equation for the effective moment of inertia is valid for both large 

and small  arguments of the ber  and bei functions. 

For  most  applications, the argument of the ber  and bei functions 

will be large since the viscosity of most liquids of interest  will be small .  

An investigation of any table of be r  and bei functions ( see  Table 1) indi- 

cates that the following expansions may be made: 

13 
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I -  

where 

~ o ( x )  =(x/)\lz-) - A  = R - A  

(43 )  I 
In the expressions above, A, B, C ,  and D a r e  constants listed in the 

tables of these functions. 

The products of the t e r m s  in Equation 42 necessary  for substi-  

tution in  Equation 41 a r e :  

bero(x) b e r l ( x )  = Mo(x) Ml(x) C O S  (R-A) C O S  (R+B)  

beio(x) beil (x) = Mo(x) M l ( x )  sin (R-A) sin ( R t B )  

beio (x) be r l  (x) = Mo (x) MI (x) sin (R-A) COS (Rf B) 

The substitution of tr igonometric identities and simplification of the above 

resu l t s  in the following equations : 

15 



bero (x) beri (x) = Mo (x) M1 (x) [ - +  sin 2R sin (B-A) 

t cos2R cos A cos B - s inLR s in  A sin B] 

beio (x) beil (x) = Mo (x) M1 (x) [i sin 2R sin (B-A) 

t sinzR cos A cos B - cosZR sin A sin B] 

beio (x) b e r l  (x) = Mo(x) M1 (x) [ 5 sin 2K cos (&Ai 

- sin2R cos  A s in  B - cos2R s in  A cos B] 

bero (x) beil (x) = Mo (x) M1 (x) [ sin 2R cos  (B-A) 

t c o s 2 R  cos A sin B t s i n L R  sin A cos  B] 

The final equation fo r  the effective moment of iner t ia  is obtained 

by substitution of Equation 45 into Equation 41. 

Ieff = 21~azhy w (a(:)* % [ s i n ( B t A )  t cos(B+A)]  

\ 

where 

1 
x = a ( y ) z  . 

Equation 46 is valid fo r  any argument x i f  the appropriate values of the 

constants a r e  taken from a table of the b e r  and bei functions. 

A trigonometric expansion of the be r  and bei functions may be made 

fo r  l a rge  arguments to simplify Equation 46. 

ber and bei  functions will be la rge  for  typical values of tank oscillation 

frequency and liquid parameters ,  an expansion of the b e r  and bei functions 

is presented in the following section. 

Since the arguments of the 

16 



i 
I 
i 
I 

i 
I 
I 
I 
I 
t 
C 
I 
I 
I 
I 
I 
I 

EFFECTIVE MOMENT O F  INERTIA FOR LARGE ARGUMENTS 

An examination of a table of values fo r  ber  and bei functions 

with arguments greater  than 1000 indicates that the constants in 

Equation 43 do not change with increasing arguments. 

having a t  least  this order  of magnitude, the following values of the 

necessary  constants a r e  taken from Table 1: 

For  arguments 

A = 0 , 3 9 2 7 0  

B = 1 .  17810 

The value of the trigonometric functions necessary for substitution i n  

Equation 46 a r e  

s in  ( B t A )  = sin (1.57080) = sin n / 2  = 1 

C O S  ( B t A )  = cos(1. 57080) = cos ~ / 2  = 0 

The equation for the effective moment of inertia for oscillating 

cylindrical tanks valid for large arguments of the be r  and bei functions 

may be obtained by substitution of Equation 48 into Equation 46. 

Since it was assumed that 

the following approximation fo r  Equation 4 9  may be made without 

significant e r r  o r .  

17 



Equation 50 consists of both a real  and imaginary part .  

manner  of presentation would be a vector a t  a phase angle with respect 

to the tank displacement. Using this notation, the effective moment of 

iner t ia  may be written 

Another 

Equation 51 indicates that the vector fo r  the effective moment of 

inertia lags the tank displacement vector by ~ / 4 .  

MOMENT O F  INERTIA RATIO 

The available state-of-the-art l i terature  indicates that the ratio 

of the effective moment of inertia to the moment of inertia of a solid 

with the same  dimensions is a useful parameter .  

iner t ia  of a solid cylinder about the longitudinal axis is 

The moment of 

where m is the m a s s  and a is the radius of the cylinder. 

of the mass in t e rms  of density and radius into Equation 52 will result  

i n  the following equation for the effective moment of inertia of a solid 

cylinder. 

Substitution 

ra4ph - -  
'solid - 2 (53) 

The effective moment of inertia ratio may be calculated by the 

rat io  of Equations 46 and 53  or  by Equation 51 and 5 3 .  

are  

These ratios 

18 
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I 

)) + i { 2 t a(%)* [ c o s ( B t A )  - sin(B+A)] 

and 

Equation 54 is valid f o r  both large and small val 

55 is valid only for values 

a(;)+ 2 1000 

1 

es of ( U / V ) ~  bl 

A plot of Equation 55 is presented in  Figure 2 for  

VELOCITY RATIO AS A FUNCTION O F  RADIUS RATIO 

t Equation 

The fluid velocity ratio in the tank is a lso of interest .  Large 

velocity ratios will indicate the location where baffles a r e  required to 

dec rease  the fluid motion. 

propellant lines o r  other obstructions could be located to influence the 

fluid motion the least .  

Small velocity ratios will indicate where 

The ratio of the velocity a t  any radius to that a t  the tank wall is 

found by evaluating Equation 19 a t  these boundary conditions and taking 

the ratio.  This ratio is 

19 
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Equation 56 may be simplified by a s imilar  approach to the one taken 

for  the effective moment of inertia.  

in Appendix D. 

The detailed derivation is presented 

The final equation for the velocity ratio is 

where 

M l ( x )  - A constant taken from Table 1 a t  the proper argument 
and used in the evaluation of the magnitude of the ber l  
and beil functions 

el(x) - A constant taken from Table 1 a t  the proper argument 
and used i n  the evaluation of the phase angle of the 
ber l  and beil functions. 

The absolute value of the velocity ratio is presented in Figure 3 
1 

as a function of the parameter  a ( w p / p ) " .  

rat io nea r  the tank wall in more  detail. As would be expected, the iner t ia  

forces  dominate a t  the higher values of a(up/p)z ,  and the viscous forces  

influence the fluid motion a t  the lower values. 

Figure 4 shows the velocity 

1 

21 



i 

0.0 0.2 0.4 0.6 0.8 1 .a 
" 4 p 4 ) ,  

Figure 3. Velocity R a t i o  
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COMPARISON O F  THEORY W I T H  EXPERIMENTAL VALUES 

The theoretical analysis of the effective moment of inertia ratios 

discussed in this report  was compared with experimental values. 

a minimum of applicable experimental information was discovered in  the 

l i terature  (Reference 4). 

was used in Reference 4 is shown in  Figure 5. 

was to rotate the a i r  bearing table from i t s  equilibrium position. The 

torsional s t r e s s  i n  the torsion bar  exerted a restoring force to the a i r  

table. 

bar  a r e  small ,  the forced oscillations produced by this experimental 

system a r e  essentially the same as  the boundary condition given by 

Equation 8. 

Only 

A sketch of the experimental equipment that 

The experimental procedure 

Assuming that the losses  in the a i r  bearing table and the torsion 

Experimental information was obtained for two tank sizes.  The 

dimensions of these tanks and the experimental values a r e  listed in 

Table 2. 

effective moment of inertia ratios is presented in Figure 6. 

mate  equation f o r  the effective moment of inertia ratio is used because 

A comparison of the analytical and experimental values of the 

The approxi- 

(%) 2 2 . 0  x 104 

The agreement  a t  large values of (azo / v )  is good and indicates 

Additional comparison that the theory derived in this report  is valid. 

with experimental values at other values of (azwlv) outside the range 

24 



L I QU I D- F I  LLED CY L I N DR 
CONTAINER ATTACHED TO 
A I R  BEARING TABLE 

I CAL 
THE 

A I R  BEARING TABLE d 
l l  t I 

A I R  
TABL 

\ 

BEARING 
.E SUPPORTS 

l l  t I 

A I R  BEARING 
TABLE SUPPORTS 

\ 

LTORSION BAR 

Figure 5. Sketch o f  E x p e r i m e n t a l  E q u i p m e n t  

25 



TABLE 2 

Tank 

A 
B 
C 
D 

PHYSICAL CHARACTERISTICS O F  THE 
CYLINDRICAL TANKS 

h 
(in. ) 

6. 0 
12.0 
19.25 
36.0 

1.93 
3.80 
5.65 
7.53 
11.35 

a h/ a L f f  
(in. ) (in. -1b- s e c 2 )  

11.875 0.506 0. IO 
11.875 1.010 0. 17 
11.875 1.622 0.22 
11.875 3.03 0 .  52 

3.75 0.516 0.0014 
3. 75 1.014 0.0020 
3.75 1.506 0.0027 
3.75 2.00 0.0034 
3. 75 3. 03 0.0047 

0.5 1098 
0.53993 
0.68313 
0.81227 

0.3855 
0. 3859 
0. 3864 
0.3868 
0.3878 
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APPENDIX A 

a 
a r  EVALUATION O F  - 

Reference 2 may be used to obtain an equation for  the evaluation of the 

derivative of the modified Bessel function as 

After application of the results of Equation A. 2 in  Equation A. 1. 

Equation A. 3 m a y  be simplified by performing the indicated multiplication. 



The final equation for  the evaluation of the derivative is I .  

r . ( A . 5 )  
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APPENDIX B 

SIMPLIFICATION OF (i'w) AND I~ (iiw) 

In o rde r  to simplify Equation 28, the s e r i e s  definition of the modified 

Bessel  function was written f rom Reference 2. 

This equation may be written in an alternate form as 

A similar definition of the Bessel function of the first kind may be 

writ ten as 

00 
2 m t n  1 

m =O mi (m+n)!  

Af te r  substitution of the identity i2 = - 1,  the above equation may be written 

as 

1 - 
Writing the s e r i e s  for  IO (i2 w)  f rom Equation B. 2: 

31 



1 .  By inspection, Equation B. 6 is equal to JO (im2w), 1 i. e. 

I 

1 It is therefore  shown that 

Writing the s e r i e s  11 (iz 1 w) from Equation B. 2: 
I 
I 

But 

By comparison of Equations B. 10 and B. 11 it is seen that 

(B. 1 1 )  

(B. 12) 

The functions Jo (w/iz)  1 and J1 (w/iz)  1 a r e  difficult to use due to  the 

imaginary argument.  This may be simplified as follows: 

32 

(B. 1 3 )  



3 2 - 

The functions Jo (-iz w )  and J1 (-i2 w)  may be expanded in Equation B. 3 

to show that 

2_ z 
JO ( - i2  w )  = JO (i2 W )  

3 - - 3 

J1 ( - i2w)  = - J 1  ( i 2 w )  

1 - 1 - 
The final expressions obtained for IO (iz w) and 11 (iz w )  a r e  

These relations have been substituted in Equation 29. 
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(B. 15 )  

(B. 16) 

(B. 17) 



APPENDIX C 

EVALUATION OF lim Ieff 
11-00 

The validity of Equation 29 

1 1 - 3 1 

may be shown by expanding JO [i2 a ( w / V ) "  ] 

se r i e s  definition of the Bessel function and taking the limit of the resulting 

expression. For  convenience, le t  

and J1 [ i2  a(a/V)z] in the 

1 3 
1 - 

- o p 2  3 - 
x = i Z a ( ; ) '  = i z a (  ~ )- 

The se r i e s  definition of JO (x) and J1 (x) a r e  

1 
m! m! 

a3 zm 
J~ = (:e i )  

m =O 

A2.L f (34 - 2! 1 2! t . .  .] 
= [I + (3 I !  l! 

and 

a3 zm i 
Jl (x)  = (r) (Fym * m! ( m t l ) !  

m=O 

2 0  (+)I 1 t . . 3 (C.4) = (T) [l + (3 2! 

3 4  



For  convenience, l e t  

1 

Taking the limit of a large coefficient of viscosity, the value x 

approaches zero.  

approximated by the first few te rms  because x is small .  Making this 

approximation, 

The se r i e s  given b y  Equation C. 3 and C. 4 may be 

Performing the indicated division and retaining t e r m s  of the second order  

= 2 - (Ty 
Substituting the resul ts  of Equation C. 7 into Equation C. 1: 
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- n a 4 h p  
- 2  

The moment of inertia of a cylinder about its axis is  

1 Isolid = - ma2 
cyl. 2 

A comparison of Equations C. i and C. 9 indicate that 

The solution obtained in this report fo r  the effective moment of 

inertia of a liquid-filled cylinder about i t s  longitudinal axis is valid in 

the limit of a very viscous liquid. 

inertia for  a cylinder filled with a liquid having a small coefficient of 

viscosity is presented in the main text. 

The value of the effective moment of 
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I 

1 - 

a1 = a ( r  w p 2  ) 

The validity of this equation is shown by the fac t  that it satisfies the 

boundary conditions a t  the tank  all and center  of the tank. 

conditions a r e  

These boundary 

V r  
Y r  

vQa 

- -  a t  r = 0, - 0  

and 

= 1  
- V+r 

at  r = a, 
v9, 

The berl and beil functions expanded in t e rms  of a constant and a 

tr igonometric function a r e  

ber l  (a1) = M1 (a ' )  cos  81 (a ' )  

beil (a1) = Ml(a ' )  sin @ , ( a i )  

ber l  (rl) = MI (r') C O S  01 (rl) 

beil (rl) = M l ( r ' )  sin e l ( r ' )  

The relations above when substituted into Equation D. 3 yield 

t i [ sin e l  (rl) cos e l  (a1)  - cos e, (rl) sin e, (a1)] } (D .5 )  

I 
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- The properties of the trigonometric identities may be used to reduce the 

above equation to a vector notation. 

The final equation fo r  the velocity ratio used in the text is obtained 
I 

by substituting the values of r' and a '  i n  Equation D. 6: 
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